
Centre de Recherche en Cancérologie et Immunologie NANTES ANGERS

New chemical tools for the production of ²¹¹At-labeled radiopharmaceuticals

Dr. François Guérard CRCI²NA-Nuclear Oncology Team Nantes-France

²¹¹At ecosystem in Nantes

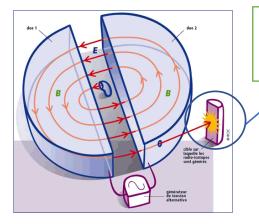
- Arronax cyclotron facility
- CRCI2NA (Cancer research center)
- Subatech (Subatomic physics and technologies) : analytical radiochemistry
- Ceisam : chemistry (molecular modeling)

Why astatine-211?

• One of the eight main α emiters considered for Targeted Radionuclide Therapy

Nuclide	Half-life	Decays	Energy α (MeV)	Production
²²⁵ Ac	10 days	$4 \alpha, 2 \beta^{-}$	5.1-8.4	²³³ U decay/cyclotron
²¹¹ At	7.2 hours	1 α, 1 EC	5.9 or 7.4	Cyclotron
²¹² Bi	61 minutes	$1 \alpha, 1 \beta^{-}$	6.1/7.8	²²⁸ Th decay/ ²²⁴ Ra generator
²¹³ Bi	46 minutes	$1 \alpha, 2 \beta^-$	6.0/8.4	²²⁵ Ac generator
²²³ Ra	11.4 days	$4 \alpha, 2 \beta^-$	5.7-7.5	²²⁷ Ac generator
¹⁴⁹ Tb	4.1 hours	1 α, EC	4.0	Accelerator
²²⁷ Th	18.7 days	5 α, 2 β ⁻	5.7-7.5	²²⁷ Ac generator
²¹² Pb/ ²¹² Bi ^a	10.6 hours	$1 \alpha, 2 \beta^{-}$	6.1/7.8	²²⁴ Ra generator

TABLE 1. CHARACTERISTICS OF α-EMITTING RADIONUCLIDES OF POTENTIAL INTEREST FOR THE THERAPY OF CANCERS


Choice of an α emitter guided by : \Rightarrow Ha

- ✤ Half-life
 - Daughter radionuclides (cascade)
 - Chemistry
 - Nuclear wastes
 - * Availability

Why astatine-211?

Increasing worldwide availability

$$^{209}\text{Bi} + \alpha \rightarrow ^{211}\text{At} + 2n$$
(28-29 MeV)

211At production:

Advantage: on demand production from cheap raw material Drawback: short distribution distance ($t_{1/2}$ = 7.2 h)

1939

lerkelev.

30 inch cyclotror

2010

Arronax Nantes/

The challenge of astatine chemistry

16

S

Se

Te

Po

17

CI

Br

- No stable isotopes: the most stable (²¹⁰At) has a short half live of 8.1 h
- The rarest of all natural elements on Earth! Only \approx 30 g estimated on Earth.
- It is "invisible" : conventional analysis tools cannot detect such tiny amounts (NMR, IR, UV, mass spectrometry)
- It's chemistry is often predicted by extrapolation from its closest chemical element, iodine...
- ... with however some unexpected observations due to relativistic effects that provide a metallic character

The challenge of astatine chemistry

16

0

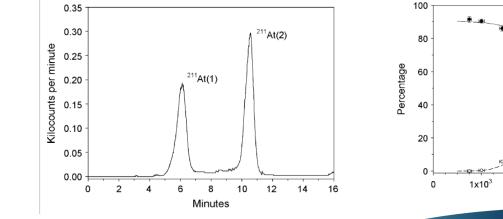
S

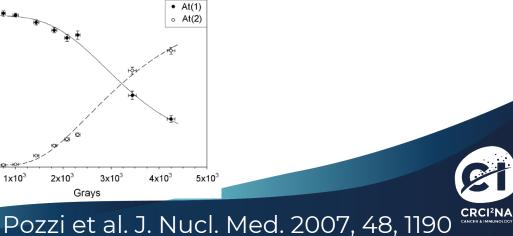
Se

Te

Po

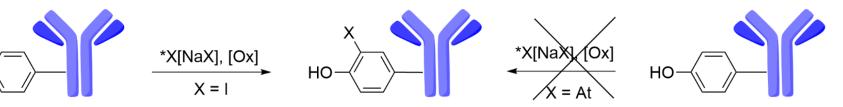
17

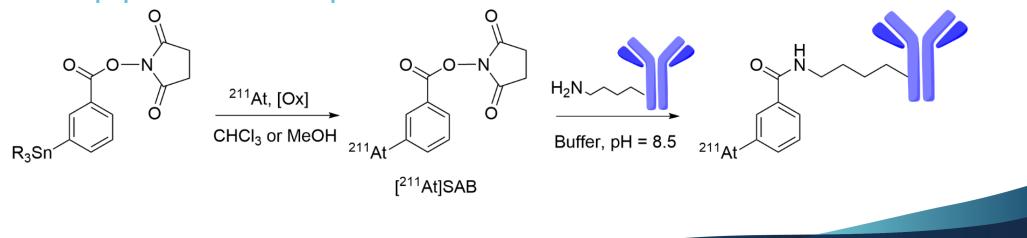

CI


Br

• Reproducible chemistry is a challenge:

impurities are often more concentrated than astatine (picomolar concentration) and uncontrollable side reactions can occur from one astatine batch to another one.

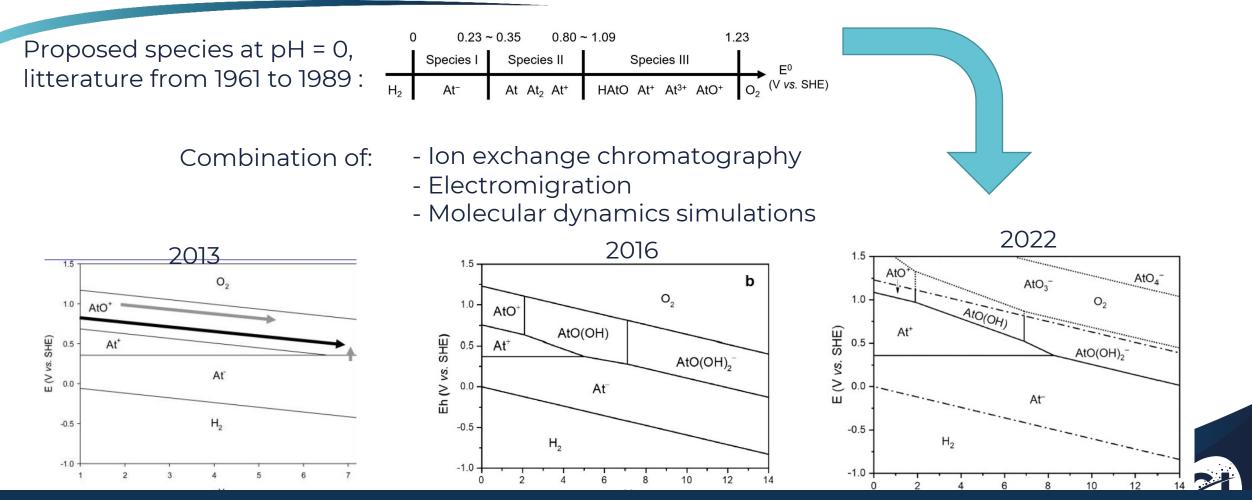

Astatine oxidation state evolves over time due to solvent radiolysis


The challenge of astatine chemistry

Unsuccessful attempts to transpose known radioiodination method

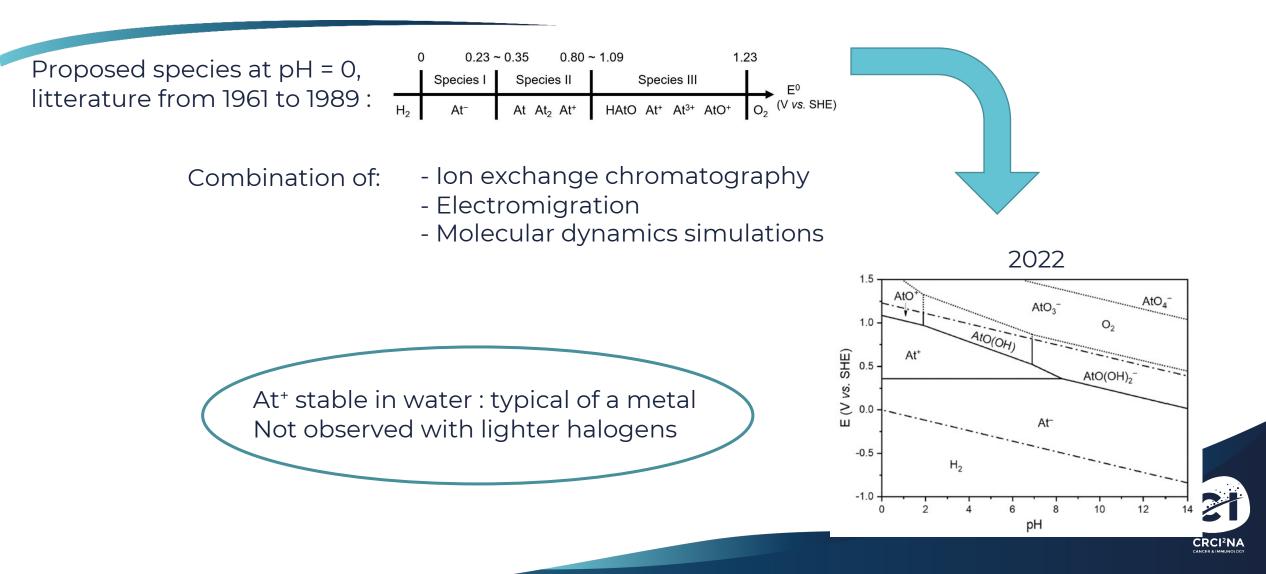
Visser et al, Int. J. Appl. Radiat. Isot. 1981, 32, 905-912

• 2 step procedure required


Zalutsky et al. Proc. Natl. Acad. Sci. U.S.A 1989, 86, 7149-7153 °

I-Understanding astatine chemical properties

(Is At a halogen or a metal ?)



Pourbaix Diagram of Astatine: Evidence of a Metallic Behaviour

Champion, J., et al. 2009. Inorganica Chimica Acta 362 (8): 2654-61. Liu, L. et al. 2022. Inorg. Chem. 61 (34), 13462–13470 Sergentu et al. 2016. Chem. Eur. J 22 (9): 2964-71

Pourbaix Diagram of Astatine: Evidence of a Metallic Behaviour

Pourbaix Diagram of Astatine: Evidence of a Metallic Behaviour

Metallic properties of At+ and AtO+

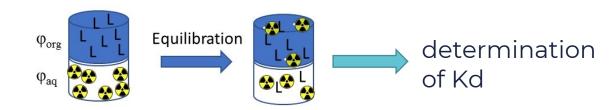
Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ica

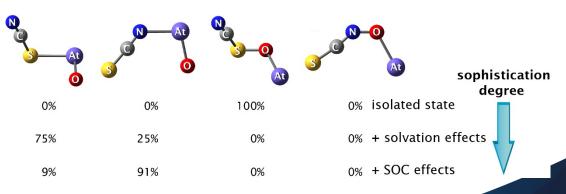
Determination of stability constants between complexing agents and At(I) and At(III) species present at ultra-trace concentrations

J. Champion^a, C. Alliot^b, S. Huclier^a, D. Deniaud^c, Z. Asfari^d, G. Montavon^{a,*}

Table 1


Parameters describing the interaction between At(x)* and SCN- and LH₄ using the CMLL and CMSL methodologies.

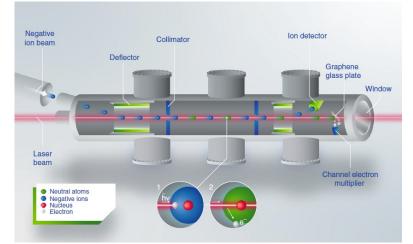
At(I)					At(III)				
Method used	D/Kd (mL/g)		Complex	logK	Method used	D/Kd (mL/g)		Complex	logK
	At(I)	Complex				At(III)	Complex		
CMLL (Toluene)	21	-	1:1	4.5 ± 0.4	CMLL (Toluene)	42.5	-	1:1	3.3 ± 0.3
CMLL (Chloroform)	8	-			CMLL (Chloroform)	2.8	-		
CMSL	90.4	-			CMSL	28.4	-		
CMLL (Toluene)	144	-	1:2	5.9 ± 0.3	CMLL (Toluene)	60	-	1:2	5.3 ± 0.2
CMLL (hexane)	3.4	-	1:1	3.8 ± 0.2	CMLL (hexane)	0.95	-	1:1	2.8 ± 0.2
CMSL	268	10.4 (cpx 1:2)			CMSL	47.7	22 (cpx 1:2)		
		DIIVO		DEVIEN	W LETTEDS			week endir	ng
	Method used CMLL (Toluene) CMLL (Chloroform) CMSL CMLL (Toluene) CMLL (hexane) CMSL	Method used D/Kd (m/At(1)) CMLL (Toluene) 21 CMLL (Chloroform) 8 CMSL 90.4 CMLL (Toluene) 144 CMLL (hexane) 3.4	Method used D/Kd (mL/g) At(1) CMLL (Toluene) 21 CMLL (Chloroform) 8 CMSL 90.4 CMLL (Toluene) 144 CMLL (hexane) 3.4 CMSL 268 D/Kd (cpx 1:2)	Method used D/Kd (mL/g) At(1) Complex CMLL (Toluene) 21 - 1:1 CMLL (Chloroform) 8 - 1:1 CMSL 90.4 - - CMLL (Toluene) 144 - 1:2 CMLL (hexane) 3.4 - 1:1 CMSL 268 10.4 (cpx 1:2) -	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Method used D/Kd (mL/g) At(1) Complex logK Method used CMLL (Toluene) 21 - 1:1 4.5 ± 0.4 CMLL (Toluene) CMLL (Chloroform) 8 - 1:1 4.5 ± 0.4 CMLL (Toluene) CMSL 90.4 - CMSL CMSL CMSL CMLL (Toluene) 144 - 1:2 5.9 ± 0.3 CMLL (Toluene) CMLL (hexane) 3.4 - 1:1 3.8 ± 0.2 CMLL (hexane) CMSL 268 10.4 (cpx 1:2) CMSL CMSL CMSL	Method used D/Kd (mL/g) At(1) Complex logK Method used D/Kd (m At(1) CMLL (Toluene) 21 - 1:1 4.5 ± 0.4 CMLL (Toluene) 42.5 CMLL (Chloroform) 8 - CMLL (Chloroform) 2.8 CMSL 28.4 CMLL (Toluene) 144 - 1:2 5.9 ± 0.3 CMLL (Toluene) 60 CMLL (hexane) 3.4 - 1:1 3.8 ± 0.2 CMLL (hexane) 0.95 CMSL 268 10.4 (cpx 1:2) DEXEMPTION DEXEMPTION 47.7	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $


Condensed Astatine: Monatomic and Metallic

Andreas Hermann School of Physics and Astronomy and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom

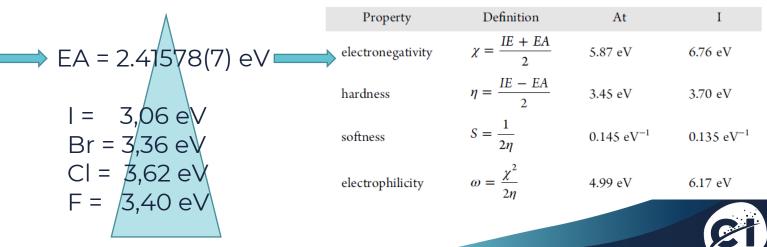
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA


Molecular modelling:



Champion et al, Phys. Chem. Chem. Phys. 2011, 13, 1498

Astatine also behaves as a halogen



- Astatide (At⁻) is stable in water
- Electron affinity reported in 2020. EA value in line with halogen trend

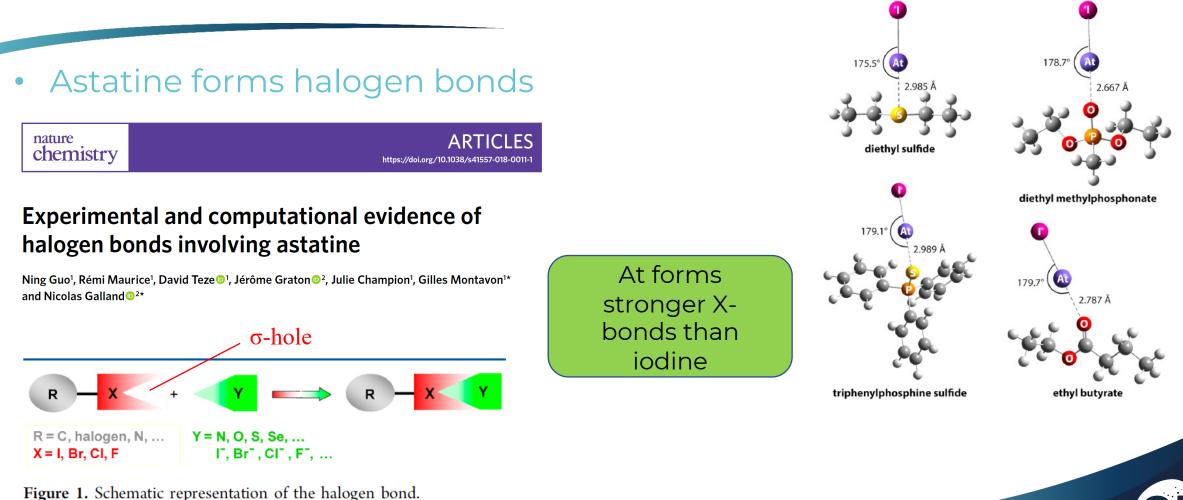

Experimental set up at CERN for EA determination by laserphotodetachment spectroscopy

Table 1. Astatine's Atomic Properties Derived from the High-Precision Measurements of EA and IE, Compared to Those of Iodine^a

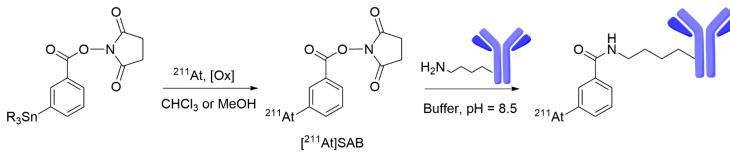
Astatine also behaves as a halogen

Guo et al. Nat. Chem. 2018, 10, 428

2-Improving labelling chemistry

Radiolabelling Chemistry with Astatine-211: Improving Methods and In Vivo Stability

Astatine labelling chemistry in the 1990-2000's


Astatine used as a typical halogen in radiolabelling reaction using nucleophilic (At⁻) or electrophilic (At⁺) species ...

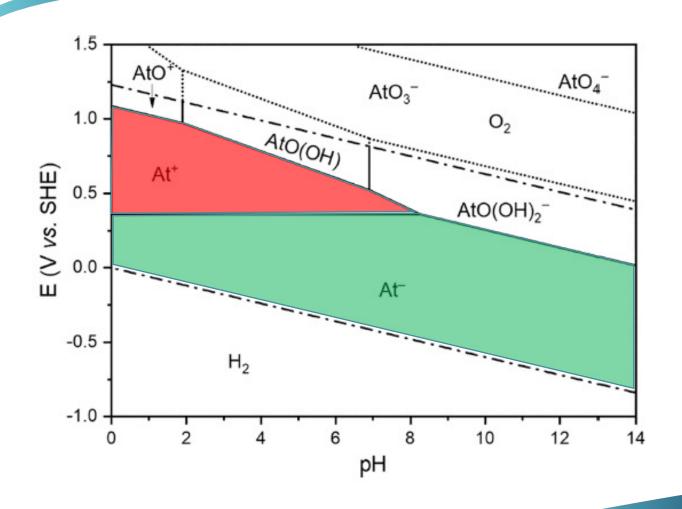
Guérard et al. Acc. Chem. Res. 2021, 54, 3264-3275 CRCI²NA

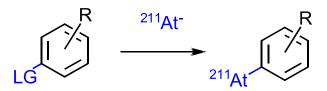
Radiolabelling Chemistry with Astatine-211: Improving Methods and In Vivo Stability

• Astatine labeling chemistry in the 1990's-2000's

lack of robustness of At⁺ species
purification issues

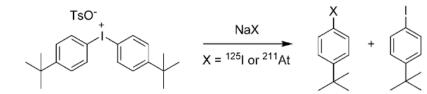
- suboptimal conjugation yields (50-75%)

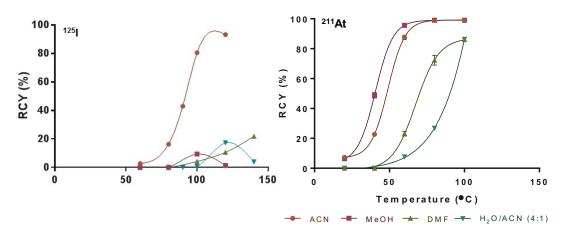

- Gold standard for ≈ 30 years
- Used in the first 2 clinical trials (Zalutsky 2008 and Andersson 2009)
- Used in our first labelling studies, perfectible results


Feasibility of the radioastatination of a monoclonal antibody with astatine-211 purified by wet extraction

(www.interscience.wiley.com) DOI: 10.1002/jlcr.1543

Mickaël Bourgeois,^{a,b*} François Guerard,^a Cyrille Alliot,^a Marie Mougin-Degraef,^a Holisoa Rajérison,^a Patricia Remaud-Le Saëc,^a Jean-François Gestin,^a François Davodeau,^a Michel Chérel,^a Jacques Barbet,^a and Alain Faivre-Chauvet^{a,b}

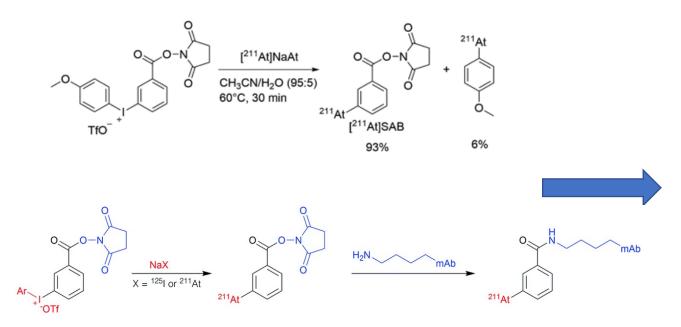



Which leaving group (LG)?

• Aryliodonium salts

At⁻ significantly more reactive than I⁻

	R	-0	NaX H ₃ CN, 30 min, 90°C K = ¹²⁵ I or ²¹¹ At	$\begin{array}{c} X \\ \downarrow \\ R \end{array} + \begin{array}{c} X \\ \downarrow \\ Q \\ Q \\ Product \\ (I) \end{array} + \begin{array}{c} X \\ \downarrow \\ Q \\ Q$		
Increasing activating effect	R H 4-Me 3-Me 2-Me 4-Cl 4-CO ₂ Et 4-CN 3-NO ₂ 4-NO ₂	$\begin{array}{c} \text{RCY}_{(1+1)}^{[a]} [\%] \\ 57 \pm 2 \\ 46 \pm 6 \\ 61 \pm 1 \\ 98 \pm 1 \\ 68 \pm 2 \\ 92 \pm 1 \\ 97 \pm 1 \\ 67 \pm 4^{[b]} \\ 90 \pm 2 \end{array}$	(I)/(II) ratio 4.8:1 1.5:1 4.4:1 24:1 10:1 38:1 > 50:1 28:1 > 50:1	$\begin{array}{c} RCY_{(1+1)}^{\ \ [a]} \ [\%] \\ 97 \pm 1 \\ 97 \pm 1 \\ 99 \pm 1 \\ 98 \pm 1 \\ 98 \pm 1 \\ 98 \pm 1 \\ 99 \pm 1 \end{array}$	(I)/(II) ratio 4.2:1 2:1 3.7:1 8.1:1 5.3:1 8.2:1 16:1 24:1 29:1	


[a] Decay corrected; [b] detected decomposition products.

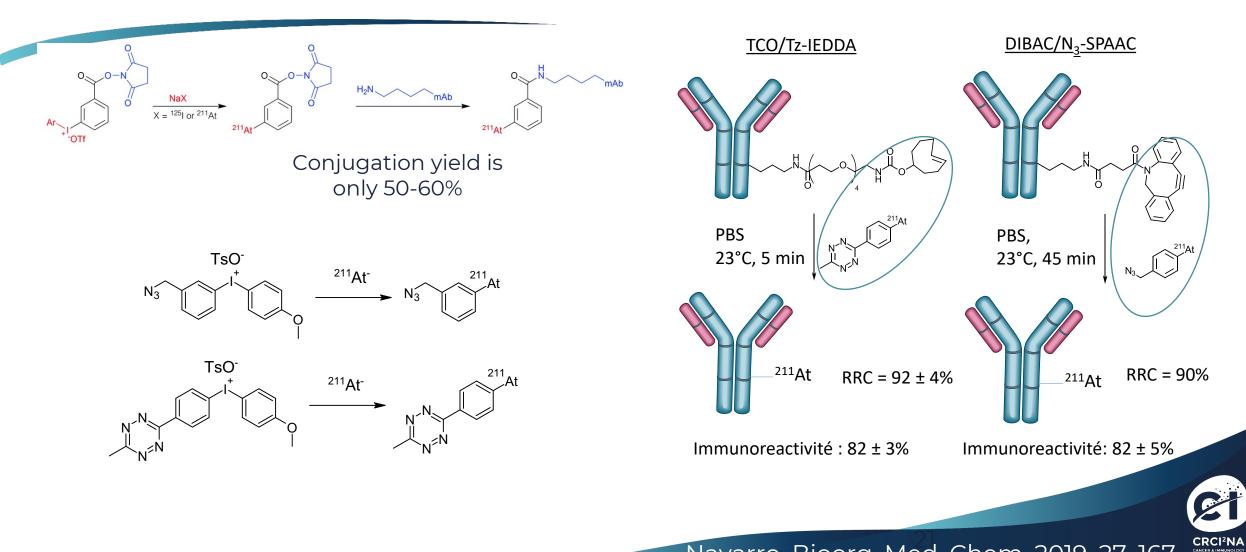
Guérard et al, Chem. Eur. J. 2016, 22, 12332-12339

Increasing (I)/(II) ratio

• Aryliodonium salts: application to mAb ²¹¹At-labeling

Highly robust procedure adopted for routine production of ²¹¹At-labeled mAb

15.15	Brain intratumoral At-211 radiotherapy targeting syndecan-1 leads to durable glioblastoma remission and immune memory in female mice	Michel Chérel – CRCl ² NA lab, Nantes Université
15.35	Advanced image analysis in nuclear medicine: an illustration from Nantes	Thomas Carlier – University Hospital of Nantes
15.55	Coffee break	
16.10	PET imaging and targeted alpha therapy in a multiple myeloma mouse model	Sébastien Gouard – CRCI ² NA lab, Nantes Université
16.30	Review on the XEMIS2 camera installation	Nicolas Beaupère – Subatech

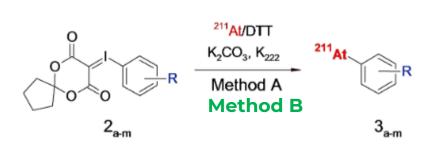


Guérard et al, Bioorg. Med. Chem. 2017, 25, 5975-598

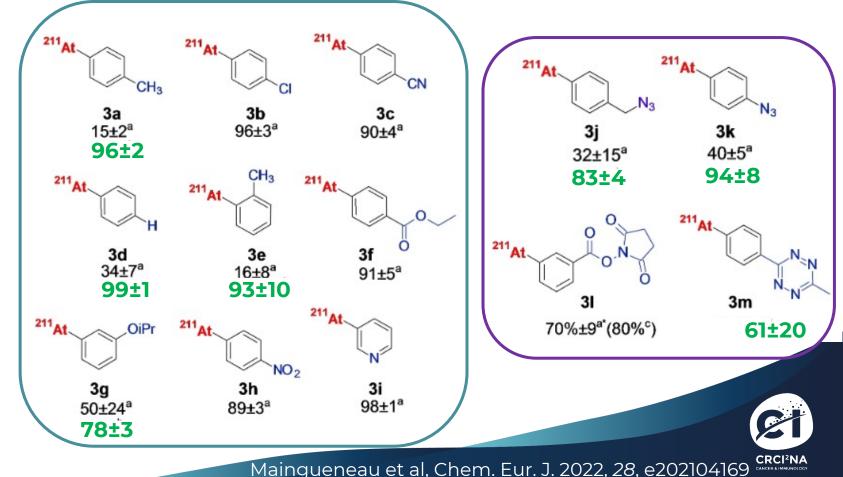
• Aryliodonium salts: application to mAb ²¹¹At-labeling

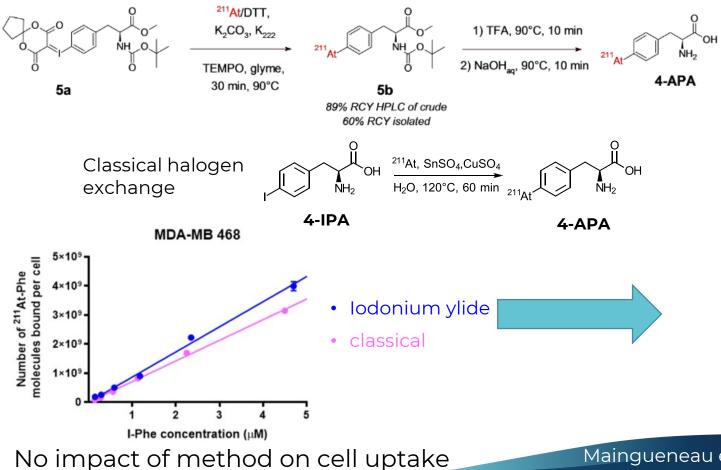


Click chemistry to improve bioconjugation step



Navarro, Bioorg. Med. Chem. 2019, 27, 167


Aryliodonium **ylides** for improved regioselectivity and RCYs

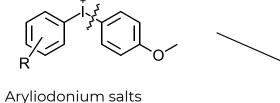

Aryliodonium ylides for improved regioselectivity and RCYs

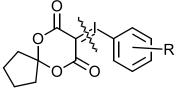
Method A: CH₃CN, 20°C, 30 min (activated compounds) Method B: Glyme, TEMPO, 90°C, 30 min (deactivated compounds)

• Aryliodonium ylides for improved regioselectivity and RCYs

AY = 27 MBq Am = 620 MBq/µmol (starting from 70MBq)

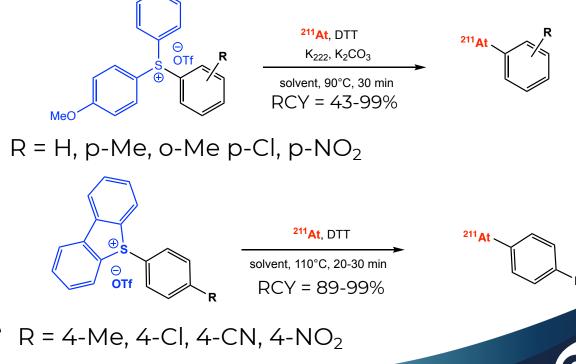
AY = 27 MBq Am = 9.5 MBq/µmol (starting from 77MBq)


Preclinical therapy studies of multiple myeloma 4-APA designed Orphan drug by FDA in 2020.

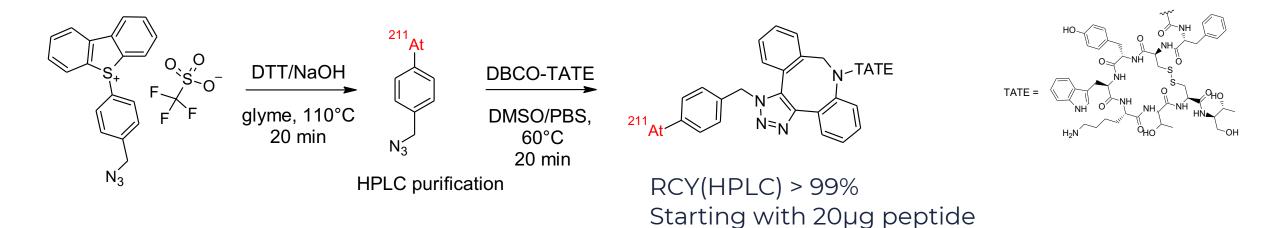

Maingueneau et al, Chem. Eur. J. 2022, 28, e202104169

Arylsulfonium salts for improved molar activity

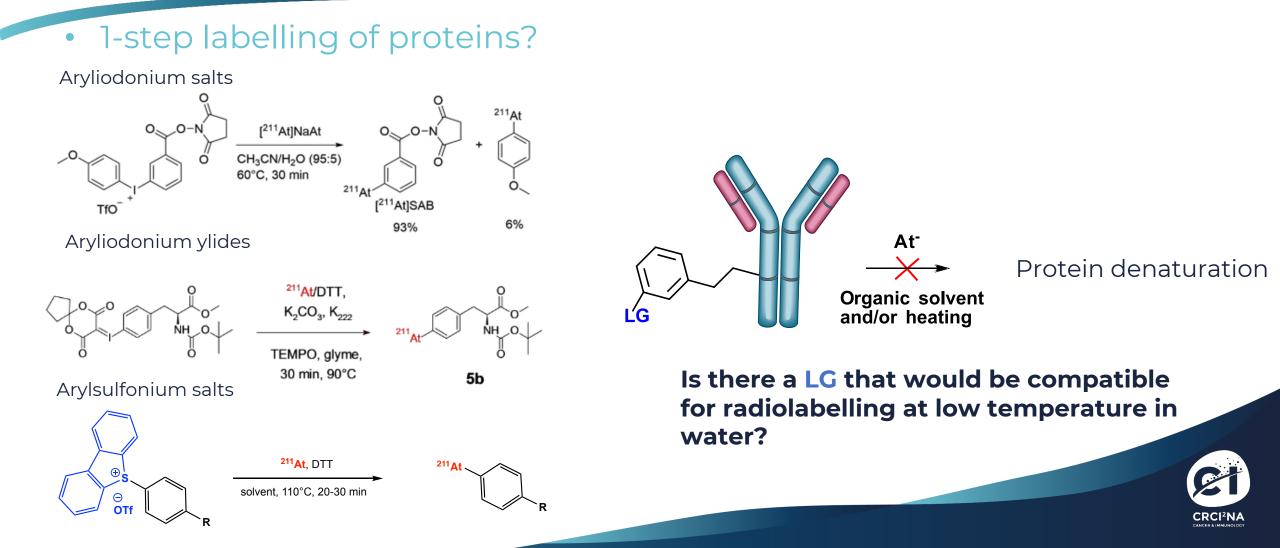
Arylsulfonium salts


TsO⁻

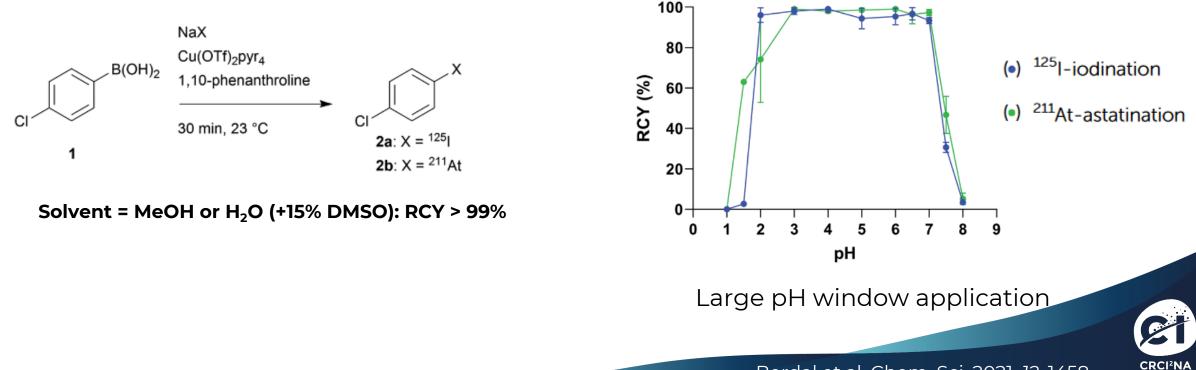
Aryliodonium ylides



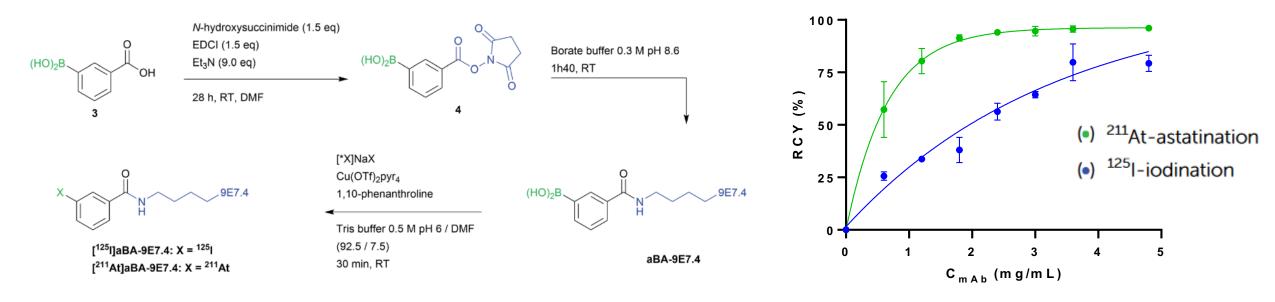
=> Limits the molar activity (Bq/mol) achievable


Maingueneau et al, Nucl. Med. Biol. 2022,108-109, S43-S44^{encre a} Immunoco

• Arylsulfonium salts application to peptide labelling



Maingueneau et al, Nucl. Med. Biol. 2022,108-109, S43-S44

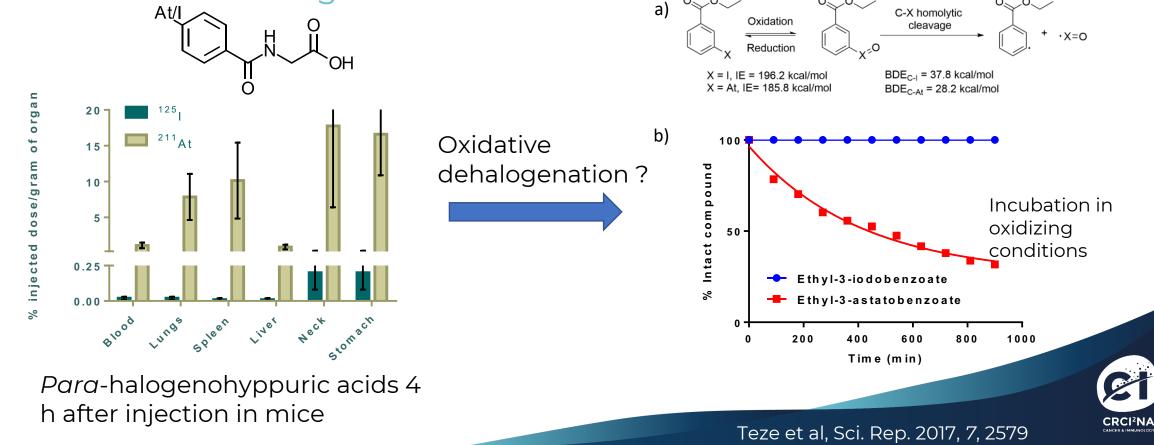


• Arylboronic acids for 1-step labelling of proteins

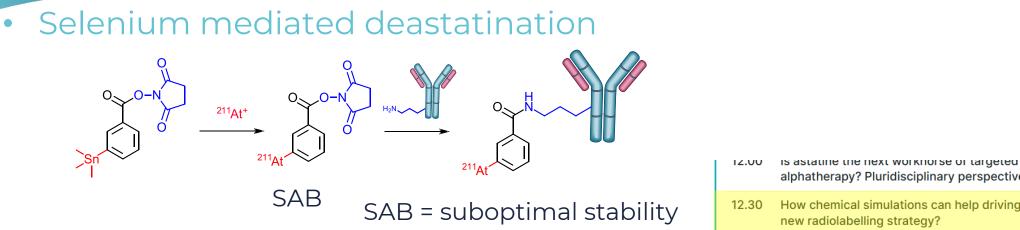
Berdal et al, Chem. Sci. 2021, 12, 1458

• Arylboronic acids for 1-step labelling of proteins

- ✓ Improved RCY and specific activity (MBq/mg) compared to 2-step procedures
- ✓ Unchanged biodistribution compared to 2-step procedures
- ✓ Preconjugated mAb storable in labelling buffer > 1 year without decrease in RCY



3-Understanding the stability issue



Understanding and improving in vivo stability of ²¹¹At-labelling

 At-labelled compounds significantly less stable in vivo than radioiodinated analogues

Understanding and improving in vivo stability of ²¹¹At-labelling

SAGMB as alternative prosthetic group

NH₂

 NH_2

211**A**†

12.00Is astatine the next workforse of targeted
alphatherapy? Pluridisciplinary perspectivesFrançois Guerard - CRCI-NA
Iab, Nantes Université12.30How chemical simulations can help driving
new radiolabelling strategy?Samuel Mador - CEISAM Iab,
Nantes Université13.00Lunch break

SAGMB = improved stability

Yssartier, RSC Med. Chem. 2024, 15, 223

Conclusions

- Astatine-211 exhibits excellent characteristics for targeted α therapy
- Availability has long been limited but is now rapidly increasing
- Chemistry is challenging due to limited knowledge in basic properties of At and is the object of new studies
- Radiolabelling chemistry is now enriching fast, with more efficient and more robust methods becoming available
- Stability issue remains to be better understood and resolved

Future directions

- Keep improving efficiency of labelling procedure
- Application to a broader scope of targets (from small molecules to proteins)
- Clinical use
- Stability:
 - improving the understanding of deastatination mecanisms to propose solutions
 - Investigating new bonding modalities (ERC SAt-Radio)

Acknowledgement

<u>Nuclear Oncology Team</u> (Michel Chérel & Françoise Kraeber-Bodéré)

Nuclear Oncology Team Nantes

erc

IRC TransForMed

Radioanalytical chemistry

Dr. Gilles Montavon

Molecular Modeling

Dr. Nicolas Galland

CRCI²NA CANCER & IMMUNOLOGY

cnrs